Activation Parameters for Base-Catalyzed Hydrolysis and ¹⁸O=C Exchange for Amides Having Amine Portions of Reduced Basicity. *N*-Ethyl-*N*-(trifluoroethyl)toluamide and *N*-Toluoyl-3,3,4,4-tetrafluoropyrrolidine Exchange Faster than They Hydrolyze

Ben-Yao Liu and R. S. Brown*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received August 21, 1992

The carbonyl ¹⁸O exchange and hydrolysis kinetics of N-ethyl-N-(trifluoroethyl)toluamide (4) and N-toluoyl-3,3,4,4-tetrafluoropyrrolidine (5) have been studied in basic media as a function of temperature. For these two amides, the rate constant for ¹⁸O=C exchange exceeds the rate constant for hydrolysis in the [OH⁻] domain where both processes are first order in [OH⁻]. For ¹⁸O exchange, the rate-limiting step is k_1 , referring to the addition of hydroxide, while for hydrolysis, the rate-limiting step is k_2 (k_2), referring to the breakdown of the aninic tetrahedral intermediates. The observed ΔH^*_{ex} , ΔH^*_{hyd} for 4 are 17.3 (0.3) and 17.3 (0.4) kcal/mol, while those for 5 are 14.5 (0.3) and 16.7 (0.2) kcal mol⁻¹, respectively. The observed ΔS^*_{ex} and ΔS^*_{hyd} values for 4 are -26.2 (0.8) and -33.2 (1.1) cal-K⁻¹-mol⁻¹ while those corresponding to 5 are -25.0 (0.8) and -23.0 (0.6) cal-K⁻¹-mol⁻¹, respectively. The activation parameters are discussed in terms of the restriction of solvent in the transition states leading to and away from the anionic tetrahedral intermediates and a change in mechanism for product formation between 4 and 5.

Introduction

Recent studies of OH⁻-promoted hydrolysis of amides 1-6 have revealed that there are well-defined mechanistic changes that occur as the basicity of the amine portion decreases.¹ Detailed carbonyl ¹⁸O exchange and D_2O

solvent kinetic isotope effect studies¹ support the generalized hydrolytic processes² for these amides presented in Scheme I. For amides with relatively basic amine portions, the path leading to product formation (path a, k_2) involves monoanionic but fully N-protonated intermediates (T_{ZW}or T_{ZW}·OH⁻).¹ For those amides, e.g., 1 and 2, installation of the requisite N⁺H is facile, and k_2 is large so that the k_{ex}/k_{hyd} ratios are small. Reduction of the amine basicity increases the energy of the N-protonated forms as well as any transition states involving them and produces increasing amounts of ¹⁸O-exchange. For example, the k_{ex} / $k_{\rm hvd}$ ratios for 3 and 4 (T = 100 °C, μ = 1.0) are 0.13³ and \sim 33 while the respective pK_a values for their ammonium ions are 8.33 and 6.3, respectively.¹ Further reduction in amine basicity so raises the energy of T_{ZW} and/or T_{ZW} OH⁻ that C-N cleavage cannot involve those species and new pathways must become important. These involve expul-

^a Key: $* = {}^{18}$ O; products refer to those initially formed after C-N cleavage.

sion of the amide anion directly from To⁻ (path b, Scheme I), perhaps with some general assistance of the solvent (k_2') or involvement of a second OH⁻ in assisting in the expulsion of amide anion from To⁻ (k_3) . To the extent that further reductions in amine basicity favor the expulsion of amide anion from To⁻, the k_{ex}/k_{hyd} ratios fall.^{1a} Our most recent study^{1a} suggests that the point of mechanistic transition from path a for C-N cleavage, to path b, occurs when the amine basicity is someplace between that of 4 and 5 (pK_a, ammonium ion of tetrafluoropyrrolidine is 4.05,⁴ k_{ex}/k_{hyd} for 5 is 9, T = 73 °C).^{1a}

The comprehensive hydrolytic process can be described by eq 1 from which can be derived eqs 2 and 3 which

 ^{(1) (}a) Brown, R. S.; Bennet, A. J.; Slebocka-Tilk, H.; Jodhan, A. J. Am. Chem. Soc. 1992, 114, 3092. (b) Slebocka-Tilk, H.; Bennet, A. J.; Hogg, H. J.; Brown, R. S. J. Am. Chem. Soc. 1991, 113, 1288. (c) Slebocka-Tilk, H.; Bennet, A. J.; Keillor, J. W.; Brown, R. S.; Guthrie, J. P.; Jodhan, A. J. Am. Chem. Soc. 1990, 112, 8507.

⁽²⁾ Brown, R. S.; Bennet, A. J.; Slebocka-Tilk, H. Acc. Chem. Res. 1992, 25, 481.

⁽³⁾ Slebocka-Tilk, H.; Brown, R. S. Unpublished results.

⁽⁴⁾ Roberts, R. D.; Ferran, H. E., Jr.; Gula, M. J.; Spencer, T. A. J. Am. Chem. Soc. 1980, 102, 7054.

describe the ¹⁸O exchange and hydrolysis kinetic constants, $k_{\rm ex}$ and $k_{\rm hyd}$. The factor of 2 in eq 2 arises from the fact that only half the reversal by k_{-1} leads to ¹⁸O exchange.

$$A + OH^{-} \xrightarrow{k_{1}} To^{-} \overbrace{k_{2}' \atop k_{3}[OH^{-}]}^{k_{2}} P \qquad (1)$$

$$k_{\rm ex} = k_1 k_{-1} [\rm{OH}^-] / 2(k_2 + k_2' + k_3 [\rm{OH}^-] + k_{-1})$$
 (2)

$$k_{\rm hyd} = k_1 [OH^-] (k_2 + k_2' + k_3 [OH^-]) / (k_2 + k_2' + k_3 [OH^-] + k_{-1})$$
(3)

Only amides 5 and 6 with relatively nonbasic amine portions have been shown^{1a} to exhibit terms in their hydrolysis profiles that are second order in $[OH^-]$, but at low $[OH^-]$, the second-order term $(k_3[OH^-])$ is unimportant. Thus, for the entire set of amides (1-6) conditions can be found where the exchange and hydrolysis kinetics are given as:

$$k_{\rm ex} = k_1 k_{-1} [\rm{OH}^-] / 2(k_2 + k_2' + k_{-1})$$
(4)

$$k_{\rm hyd} = k_1 [OH^{-}] (k_2 + k_2') / (k_2 + k_2' + k_{-1})$$
 (5)

$$k_{\rm ex}/k_{\rm hyd} = k_{-1}/2(k_2 + k_2')$$
 (6)

Amides 4 and 5 stand alone among presently investigated amides in that their $k_{\rm ex}/k_{\rm hyd}$ ratios are large enough that the pathways leading to exchange and hydrolysis are kinetically isolated and therefore are amenable to individual analysis. Also, the fact that there appears to be a break in the $k_{\rm ex}/k_{\rm hyd}$ ratios in passing from $3 \rightarrow 4 \rightarrow 5$ suggests that there is a change in the mechanism of breakdown from the k_2 pathway (Scheme I) to the k_2' pathway as the amine basicity is reduced to the point where its departure as an anion is favored. In order to offer some insight into this mechanistic change, we determined the activation parameters, ΔH^* and ΔS^* , for the exchange and hydrolysis processes for amides 4 and 5.

Experimental Section

(a) Materials. N-Ethyl-N-(trifluoroethyl)toluamide $(4)^{1b}$ and N-toluoyl-3,3,4,4-tetrafluoropyrrolidine $(5)^{1a}$ were prepared as previously described, as were their 50% ¹⁸O-labeled analogues.

(b) Kinetics. The rate of hydrolysis of 4 at various temperatures were determined by HPLC analysis. Conventional UV/ vis spectrophotometry cannot be used because the amine product decomposes in the reaction medium and gives colored products. NaOH solutions were prepared under CO₂-free conditions in an Ar-filled drybox and stored under Ar. The concentrations were determined by titration with standardized HCl (phenolphthalein indicator). H_2O was prepared CO_2 and O_2 free by passing distilled H₂O through an Osmonics Aries water purification system consisting of two MR-1 mixed bed cartridges and one MROX-1 mixed bed, organic, and O₂ removal cartridge. For each temperature set, 11 μ L (12.9 mg) of 4 in 1 mL of DME was added to 24 mL of 1.08 M NaOH solution (4% v/v DME for solubility) such that the final [amide] was 2.10 mM. The solution was divided into five or six portions, each being placed in an 8-mL Teflon FEP centrifuge tube which was then sealed with a Nalgene leak-proof cap having a Teflon liner. The sealed tubes were thermostated at 72.0, 79.0, 86.0, 93.0 (water circulating bath), and 100 °C (boiling H_2O vapor). The tube corresponding to zero time (t_0) was removed after a 15-min equilibration period. The other tubes were removed after various times and cooled in an ice bath, and a precisely measured 0.50-mL portion was removed

Table I. Pseudo-First-Order Rate Constants for Hydrolysis and ¹⁸O Exchange of Amide 4⁴

temp (°C)	$k_{\rm hyd}~({ m s}^{-1} imes 10^5)^b$	$k_{\rm ex}~({\rm s}^{-1} imes 10^5)^c$	$k_{\rm ex}/k_{\rm hyd}^d$
72.0	0.49 ± 0.02	1.37 ± 0.01	31.7
79.0	0.78 🛳 0.01	2.28 ± 0.01	33.3
86.0	1.28 ± 0.06	3.74 ± 0.04	33.2
93.0	2.20 ± 0.04	5.94 ± 0.16	30.7
100.0	3.43 ± 0.04	10.0 • 0.1	33.1

^a Errors from standard deviations of slopes of plots of ln [residual amide] or ln $(I_{M^++2}/(I_{M^++2} + I_{M^+}))$ vs time where I_{M^+} and I_{M^++2} are mass spectrometric peak intensities of parent and parent + 2 ions. ^b At 1.08 M NaOH. ^c At 0.095 M NaOH ($\mu = 1.0$ (KCl)). ^d k_{ex} and k_{hyd} converted to second-order rate constants to determine k_{ex}/k_{hyd} ratio.

Table II. Pseudo-First-Order Rate Constants for Hydrolysis and ¹⁸O Exchange of Amide 5⁴

temp (°C)	$k_{\rm hyd}~({ m s}^{-1} imes 10^5)$	$k_{\rm ex}~({\rm s}^{-1}\times 10^5)$
33.1		2.12 ± 0.02
40.1	0.28 🗢 0.01	3.57 ± 0.10
47.0		6.41 ± 0.13
50.0	0.671 ± 0.01	
54.0		10.6 ± 0.2
57.0	1.15 ± 0.02	
61.3		16.9 @ 0.2
64.0	1.97 🛳 0.03	
70.1	3.30 ± 0.13	
71.5	3.74 ± 0.05	
72.6	4.05 ± 0.05	
75.0	4.58 🛳 0.04	
77.5	5.79 ± 0.07	
80.0	6.52 ± 0.10	
82.5	7.83 ± 0.14	
85.0	8.52 ± 0.17	

^a [NaOH] = 0.0219 M, μ = 1.0 (KCl).

and quenched by injection into 0.75 mL of MeOH containing enough HOAc to neutralize the base. Twenty μ L of this solution was subjected to HPLC analysis to determine quantitatively the amount of residual amide: flow, 1.38 mL/min, 60/40 MeOH/ H₂O degassed with He for 10 min before run; Waters 8 MB C18 radial pak column; UV detection 254 nm; amide retention time, 10.7 min. For each temperature two independent samples were analyzed, and each was subjected to three HPLC determinations of the amount of residual amide. The k_{hyd} value was determined as the slope of a plot of ln (amide area) vs time: the averages of the so-determined pseudo-first-order rate constants for the hydrolyses of 4 are presented in Table I. The rate of hydrolysis of 5 at 40.2, 50.0, 57.0, 64.0, 70.1, 71.5, 72.6, 75.0, 77.5, 80.0, 82.5, and 85.0 °C (external MGW Lauda RM20 water circulating bath) was measured by observing the rate of increase in absorbance at 235 nm of 1×10^{-4} M aqueous solutions of 5 (containing 4%) DME for solubility) using a Cary 210 UV/vis spectrophotometer. The NaOH concentration was 0.0219 M ($\mu = 1.0$ (KCl)), and all solutions were CO_2 free and made up in an Ar-filled drybox. Observed pseudo-first-order rate constants (k_{hyd}) were obtained by fitting the absorption vs time curves to a standard exponential model. Given in Table II are the k_{hyd} values for hydrolysis of 5 (average of three runs). The ¹⁸O exchange kinetics for 50% ¹⁸O labeled amides were determined as previously described^{1a,b} at five different temperatures for each amide. The pseudo-firstorder rate constants for exchange (k_{ex}) for 4 and 5 are reported in Tables I and II.

Results and Discussion

The pseudo-first-order rate constants for base-catalyzed hydrolysis and carbonyl ¹⁸O exchange of amides 4 and 5 shown in Tables I and II were converted to second-order ones and then plotted according to the Eyring equation in the usual way against 1/T to give the activation parameters shown in Table III.

Because $k_{ex} > k_{hyd}$ for these two amides, reversal from the anionic tetrahedral intermediate (k_{-1}) must be large

Table III. Activation Parameters for Base-Catalyzed Hydrolysis and Carbonyl ¹⁸O Exchange of Amides 4 and 5⁴

	amide 4		amide 5	
parameter	exchange	hydrolysis ^b	exchange	hydrolysis
ΔH^{\dagger} (kcal·mol ⁻¹)	17.3 ± 0.3	17.3 ± 0.4	14.5 ± 0.3	16.7 ± 0.2
ΔS^{\ddagger} (cal·K ⁻¹ ·mol ⁻¹)	-26.2 ± 0.8	-33.2 ± 1.1	-25.0 ± 0.8	-23.0 ± 0.6
$\Delta G^{\ddagger} (100 \ ^{\circ}\text{C}) \\ (\text{kcal-mol}^{-1})$	27.1 ± 0.6	29.7 ± 0.8	23.8 ± 0.6	25.3 ± 0.4

^a Determined from Eyring plots of $\ln (kh/k_BT)$ vs $^1/_T$ where h = Planck's constant, $k_B =$ Boltzman's constant, and k = second-order exchange or hydrolysis rate constant; duplicate runs of five temperatures for exchange and hydrolysis of 4 and exchange for 5; triplicate runs of 12 temperatures for hydrolysis of 5. ^b Previously determined^{1b} ΔH^1 and ΔS^1 for hydrolysis of 4 16.4 ± 0.6 kcal·mol⁻¹, 35.5 ± 1.5 cal·K⁻¹·mol⁻¹: by ¹H NMR, three temperatures.

relative to product formation $(k_2 \text{ or } k_2')$. Thus, the expressions for k_{ex} and k_{hvd} are simplified to:

$$k_{\rm ex} = k_1 [\rm OH^-]/2 \tag{7}$$

$$k_{\rm hyd} = k_1(k_2 + k_2')[OH^-]/k_{-1} = K(k_2 + k_2')[OH^-]$$
 (8)

where $K = k_1/k_{-1}$. As such, k_{ex} and its associated activation parameters pertain only to the transition state corresponding to OH⁻ attack, while the rate-limiting step(s) pertaining to hydrolysis are those involving k_2 and/or k_2' corresponding to breakdown of the anionic intermediate.

Inspection of the activation parameters given in Table III reveals that for amide 4 the ΔH^* for both hydrolysis and exchange are essentially equal (17.3 kcal·mol⁻¹) while the ΔS^* values are both negative, with the one associated with hydrolysis being somewhat more negative. This has two important ramifications, namely: (1) it is the entropy term that retards the hydrolysis and allows exchange to predominate, and (2) since the ΔH^* for exchange and hydrolysis are experimentally the same, the k_{ex}/k_{hvd} ratio will not change significantly as a function of temperature. That the ΔS^*_{hvd} is more negative than the ΔS^*_{ex} is probably a consequence of the greater restriction of waters of solvation in the transition state required for breakdown of the highly charged separated T_{ZW} or T_{ZW} OH⁻ relative to the transition state required for simple addition to OHto form To⁻ from 4.

In the case of amide 5 where $k_{ex}/k_{hyd} = k_{-1}/2k_{2}' = 9$ at 73 °C,^{1a} the entropies for exchange and hydrolysis are similar which means that ¹⁸O exchange exceeds hydrolysis because the ΔH^*_{ex} is lower than ΔH^*_{hyd} by roughly 2 kcal-mol⁻¹. The similarity of the ΔS^*_{ex} and ΔS^*_{hyd} values is consistent with the proposed mechanism shown in Scheme I where the transition states controlling exchange (k_1) and hydrolysis (k_2') are both close to To⁻ and involve similar restriction of solvent in the expulsion/addition of the mono anionic groups, OH⁻ or NR₁R₂. The fact that $\Delta H^*_{ex} < \Delta H^*_{hyd}$ means that the k_{ex}/k_{hyd} ratio will decrease as the temperature increases. From the activation parameters given in Table III, k_{ex}/k_{hyd} ratios of 12.9 and 7.4 at 40 and 100 °C are calculated, respectively. A similar sort of dissection of the activation parameters controlling exchange and hydrolysis has been attempted previously by Deslongchamps et al.⁵ in order to lend support to his theory of stereoelectronic control of the cleavage of tetrahedral intermediates formed during hydrolysis reactions. However, the data presented in the original paper^{5a} for hydrolysis and ¹⁸O exchange for amides 7-9 indicate that the k_{ex}/k_{hvd} ratios vary from 0.28 to 0.48

(T = 10-45 °C), 0.10-0.30 (T = 40-85 °C), and 0.18-0.43(T = 60-90 °C), respectively, which means that the k_{-1} and k_2 transition states are of comparable energy. Therefore, the appropriate equations for describing the exchange and hydrolysis kinetics for 7-9 are not the reported ones⁵ which are equivalent to eqs 7 and 8, but rather eqs 4 and 5 where the $k_3[OH^-]$ term is omitted from the generalized hydrolysis pathway of eq 1. Moreover, in such cases because the exchange and hydrolysis processes are of comparable energy, they are not kinetically isolated, so that any activation parameters determined are those corresponding to the virtual transition states associated with partitioning of the intermediate.⁶ In the reported cases, it was observed that k_{ex}/k_{hyd} ratios increased with temperature, which is required since $\Delta H^*_{ex} > \Delta H^*_{hyd}$.

Conclusions. For amides 4 and 5 where ¹⁸O exchange is far more prominent than hydrolysis, the exchange and hydrolysis transition states are kinetically isolated and therefore analyzable in terms of their activation parameters. The important consequence of these findings is that for a given amide k_{ex}/k_{hyd} may increase,⁵ decrease, or remain unchanged as a function of temperature, but this is controlled by the ΔH^* of the competing transition states which is not immediately predictable in any given situation.

Acknowledgment. The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada, the University of Alberta, and donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support of this work. They also acknowledge the experimental contributions of Dr. H. Slebocka-Tilk for determining the k_{ex} and k_{hyd} values of amide 3.

^{(5) (}a) Deslongchamps, P.; Bartlett, R.; Taillefer, R. J. Can. J. Chem. 1980, 58, 2167. (b) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1983; pp 111-116.

⁽⁶⁾ According to Deslongchamps' analysis⁵ of eq 1, "because there is isotope exchange with solvent, k_2 must be the rate determining step and since an OH group is a better leaving group than an R_2N group, we must have $k_{-1} \gg k_2$ and hence $k_{hyd} = Kk_2$ where $K = k_1/k_{-1}$, the equilibrium constant for tetrahedral intermediate formation". This assumption is only true if $k_{ex} \gg k_{hyd}$ as is the situation for amides 4 and 5 studied herein, but is not warranted for amides 7–9. Any conclusions based on such assumptions that relate to the support of the stereoelectronic theory⁵ as pertains to tetrahedral intermediate partitioning must be viewed with skepticism.